Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 24

Answer

\[\frac{e^x}{2}\left(\cos x+\sin x\right)+C\]

Work Step by Step

Let \[I=\int e^x \cos x\: dx\;\;\;\ldots (1)\] Using integration by parts \[I=\cos x\int e^x \: dx-\int\left((\cos x)'\int e^x \:dx\right)dx\] \[I=(\cos x )\: e^x+\int(\sin x) \: e^x \:dx\] Again using integration by parts \[I=e^x \cos x+\sin x\int e^x dx-\int \left((\sin x)'\int e^x\:dx\right)dx\] \[I=e^x \cos x+e^x \sin x-\int (\cos x)\: e^x\:dx+C\] Where $C$ is constant of integration \[I=e^x (\cos x+\sin x)-I+C\] \[I=\frac{e^x}{2}(\cos x+\sin x)\] Hence \[I=\frac{e^x}{2}(\cos x+\sin x)\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.