Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 25

Answer

\[\frac{3}{2}\ln (x^2+1)-3\tan^{-1}x+\sqrt 2\tan^{-1}\left(\frac{x}{2}\right)+C\]

Work Step by Step

Let \[I=\int\frac{3x^3-x^2+6x-4}{(x^2+1)(x^2+2)}dx\;\;\;\;\ldots (1)\] \[\frac{3x^3-x^2+6x-4}{(x^2+1)(x^2+2)}=\frac{Ax+B}{x^2+1}+\frac{Cx+D}{x^2+2}\;\;\;\ldots (2)\] \[3x^3-x^2+6x-4=(Ax+B)(x^2+2)+(Cx+D)(x^2+1)\;\;\;\] \[3x^3-x^2+6x-4=Ax^3+2Ax+Bx^2+2B+Cx^3+Cx+Dx^2+D\] \[3x^3-x^2+6x-4=(A+C)x^3+(B+D)x^2+(2A+C)x+(2B+D)\] Comparing like coefficients \[A+C=3\;\;\;\ldots (3)\] \[B+D=-1\;\;\;\ldots (4)\] \[2A+C=6\;\;\;\ldots (5)\] \[2B+D=-4\;\;\;\ldots (6)\] On Solving (3) and (5) We get $A=3 \;\;$ and $C=0$ On Solving (4) and (6) We get $B=-3\;\;$ and $D=2$ With help of (2) , equation (1) becomes \[I=\int\frac{3x}{x^2+1}dx-\int\frac{3}{x^2+1}dx+\int\frac{2}{x^2+2}dx\;\;\;\ldots (7)\] \[I=\frac{3}{2}\int\frac{2x}{x^2+1}dx-3\int\frac{dx}{x^2+1^2}+2\int\frac{dx}{x^2+(\sqrt 2)^2}dx\] \[\left[\int\frac{f'(x)}{f(x)}dx=\ln(f(x))\right]\] \[\left[\int\frac{1}{x^2+a^2}dx=\frac{1}{a}\tan^{-1}\frac{x}{a}\right]\] \[I=\frac{3}{2}\ln (x^2+1)-3\tan^{-1}x+\frac{2}{\sqrt 2}\tan^{-1}\left(\frac{x}{2}\right)+C\] Where $C$ is constant of integration \[I=\frac{3}{2}\ln (x^2+1)-3\tan^{-1}x+\sqrt 2\tan^{-1}\left(\frac{x}{2}\right)+C\] Hence \[I=\frac{3}{2}\ln (x^2+1)-3\tan^{-1}x+\sqrt 2\tan^{-1}\left(\frac{x}{2}\right)+C.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.