Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 27

Answer

\[\frac{2}{5}\]

Work Step by Step

Let \[I=\int_{0}^{\frac{π}{2}}\cos ^3 x\sin 2x\; dx\] \[I=\int_{0}^{\frac{π}{2}}\cos ^3 x(2\sin x\cos x)\; dx\] \[I=2\int_{0}^{\frac{π}{2}}\cos ^4 x(\sin x)\; dx\;\;\;\ldots (1)\] Let \[I_1=\int\cos^4 x(\sin x)dx\] Substitute $\;\cos x=t\;\;\;\ldots (2)$ \[\Rightarrow -\sin xdx=dt\] \[I_1=-\int t^4 dt=-\frac{t^5}{5}+C\] Where $C$ is constant of integration From (2) \[I_1=-\frac{\cos^5 x}{5}+C\;\;\;\ldots (3)\] Using (3) in (1) \[I=2\left[-\frac{\cos^5 x}{5}\right]_{0}^{\frac{π}{2}}=2\left[0+\frac{1}{5}\right]=\frac{2}{5}\] Hence \[I=\frac{2}{5}\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.