Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 28

Answer

\[x+3x^{\frac{2}{3}}+6x^{\frac{1}{3}}+6\ln\left|x^{\frac{1}{3}}-1\right|+C\]

Work Step by Step

Let \[I=\int\frac{\sqrt[3]{x}+1}{\sqrt[3]{x}-1}dx\] \[I=\int\frac{x^{\frac{1}{3}}+1}{x^{\frac{1}{3}}-1}dx\;\;\;\ldots (1)\] Substitute $\;x=t^3\;\;\;\ldots (2)$ \[\Rightarrow dx=3t^2 dt\] (1) becomes \[I=\int\left(\frac{t+1}{t-1}\right)3t^2dt\] \[I=\int\left[\frac{(t-1)+2}{t-1}\right]3t^2dt\] \[I=\int\left[1+\frac{2}{t-1}\right]3t^2dt\] \[I=\int\left[3t^2+\frac{6t^2}{t-1}\right]dt\] \[I=\int\left[3t^2+\frac{6(t^2-1+1)}{t-1}\right]dt\] \[I=\int\left[3t^2+\frac{6(t-1)(t+1)+6}{t-1}\right]dt\] \[I=\int\left[3t^2+6t+6+\frac{6}{t-1}\right]dt\] \[I=t^3+3t^2+6t+6\ln|t-1|+C\] Where $C$ is constant of integration From (2) \[I=x+3x^{\frac{2}{3}}+6x^{\frac{1}{3}}+6\ln\left|x^{\frac{1}{3}}-1\right|+C\] Hence \[I=x+3x^{\frac{2}{3}}+6x^{\frac{1}{3}}+6\ln\left|x^{\frac{1}{3}}-1\right|+C\;\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.