Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 49

Answer

\[\frac{π}{4}\]

Work Step by Step

Let \[I=\int_{-\infty}^{\infty}\frac{dx}{4x^2+4x+5}\] \[I=\lim_{t\rightarrow \infty}\int_{-t}^{t}\frac{dx}{4x^2+4x+5}\;\;\;\;\ldots (1)\] Let \[I_1=\int\frac{dx}{4x^2+4x+5}\] \[I_1=\frac{1}{4}\int\frac{dx}{x^2+x+\frac{5}{4}}\] \[I_1=\frac{1}{4}\int\frac{dx}{x^2+x+\frac{5}{4}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2}\] \[I_1=\frac{1}{4}\int\frac{dx}{\left(x+\frac{1}{2}\right)^2+1^2}\] \[\left[\int\frac{dx}{a^2+x^2}=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)\right]\] \[I_1=\frac{1}{4}\tan^{-1}\left(x+\frac{1}{2}\right)+C\;\;\;\;\ldots (2)\] Where $C$ is constant of integration Using (2) in (1) \[I=\lim_{t\rightarrow \infty}\left[\frac{1}{4}\tan^{-1}\left(x+\frac{1}{2}\right)\right]_{-t}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[\frac{1}{4}\tan^{-1}\left(t+\frac{1}{2}\right)-\frac{1}{4}\tan^{-1}\left(-t+\frac{1}{2}\right)\right]\] \[I=\frac{1}{4}\left(\frac{π}{2}\right)-\frac{1}{4}\left(\frac{-π}{2}\right)=\frac{2π}{8}\] \[I=\frac{π}{4}\] Hence \[I=\frac{π}{4}\;\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.