Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 46

Answer

Divergent

Work Step by Step

Let \[I=\int_{0}^{1}\frac{1}{2-3x}dx\] Clearly $\frac{2}{3}$ is point of infinite discontinuity of integrand $\large\frac{1}{2-3x}$ \[\Rightarrow I=\int_{0}^{\frac{2}{3}}\frac{1}{2-3x}dx+\int_{\frac{2}{3}}^{1}\frac{1}{2-3x}dx\;\;\;\ldots (1)\] Let \[I_1=\lim_{t\rightarrow \frac{2}{3}^-}\int_{0}^{t}\frac{1}{2-3x}dx\;\;\;\ldots (2)\] \[I_1=\lim_{t\rightarrow \frac{2}{3}^-}\left[\frac{-1}{3}\ln|2-3x|\right]_{0}^{t}\] \[I_1=\lim_{t\rightarrow \frac{2}{3}^-}\left[\frac{-1}{3}\ln|2-3t|+\frac{1}{3}\ln 2\right]\] $\;\;\;\;\;\;\;\;\;\;=$ does not exist Since limit on R.H.S. of (2) does not exist so $I_1$ is divergent From (1) Consequently $I$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.