Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 30

Answer

$ -\sin^{-1}(e^{-x})+C$

Work Step by Step

Given $$\int \frac{d x}{e^x \sqrt{1-e^{-2 x}}}$$ Let $$u= e^{-x}\ \ \ \to\ \ \ du =\frac{-dx}{e^x}$$ Then \begin{aligned} \int \frac{d x}{e^x \sqrt{1-e^{-2 x}}}&= \int \frac{-d u}{ \sqrt{1-u^2}}\\ &=-\sin^{-1}(u)+C\\ &= -\sin^{-1}(e^{-x})+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.