Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 20

Answer

\[\frac{\sec^7 \theta}{7}+\frac{\sec^3 \theta}{3}-\frac{2}{5}\sec^5 \theta+C\]

Work Step by Step

Let \[I=\int\tan^5 \theta\;\sec^3 \theta\;d \theta\] \[I=\int\tan^4 \theta\;\sec^2 \theta(\sec \theta\tan\theta)\;d\theta\] \[\left[\tan^2\theta=\sec^2\theta-1\right]\] \[I=\int\left(\sec^2 \theta-1\right)^2\;\sec^2 \theta(\sec \theta\tan\theta)\;d\theta\] Substitute $\;t=\sec\theta\;\;\;\ldots (1)$ \[\Rightarrow dt=\sec\theta\tan\theta\;d\theta\] \[I=\int\left(t^2-1\right)^2t^2\;dt\] \[I=\int\left(t^4+1-2t^2\right)t^2\:dt\] \[I=\int\left(t^6+t^2-2t^4\right)dt\] \[I=\frac{t^7}{7}+\frac{t^3}{3}-\frac{2}{5}t^5+C\] Where $C$ is constant of integration From (1) \[I=\frac{\sec^7 \theta}{7}+\frac{\sec^3 \theta}{3}-\frac{2}{5}\sec^5 \theta+C\] Hence, \[I=\frac{\sec^7 \theta}{7}+\frac{\sec^3 \theta}{3}-\frac{2}{5}\sec^5 \theta+C \;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.