Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 41

Answer

\[\frac{1}{36}\]

Work Step by Step

Let \[I=\int_{1}^{\infty}\frac{1}{(2x+1)^3}dx\] This is improper integral \[\Rightarrow I=\lim_{t\rightarrow \infty}\int_{1}^{t}\frac{1}{(2x+1)^3}dx \;\;\;\ldots (1)\] \[I=\lim_{t\rightarrow \infty}\int_{1}^{t}(2x+1)^{-3}dx\] \[I=\lim_{t\rightarrow \infty}\left[\frac{(2x+1)^{-2}}{-2(2)}\right]_{1}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[\frac{-1}{4(2t+1)^2}+\frac{1}{4(3)^2}\right]\] \[I=\frac{1}{36}\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=\frac{1}{36}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.