Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 22

Answer

\[2\left[\sqrt{t}\sin\sqrt{t}+\cos\sqrt{t}\right]+C\]

Work Step by Step

Let \[I=\int\cos\sqrt{t} \:dt\] Substitute $\:x=\sqrt{t}\;\;\;\ldots (1)$ \[\Rightarrow dx=\frac{1}{2\sqrt{t}}dt\] \[I=2\int x\cos x \;dx\] Using integration by parts \[I=2\left[x\int\cos x \;dx-\int\left((x)'\int\cos x \;dx\right)\;dx\right]+C\] Where $C$ is constant of integration \[I=2\left[x\sin x-\int\sin x\:dx\right]+C\] \[I=2\left[x\sin x+\cos x\right]+C\] From (1) \[I=2\left[\sqrt{t}\sin\sqrt{t}+\cos\sqrt{t}\right]+C\] Hence , \[I=2\left[\sqrt{t}\sin\sqrt{t}+\cos\sqrt{t}\right]+C.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.