Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 26

Answer

\[\frac{x\sin^2 x}{2}-\frac{1}{4}x+\frac{\sin x\cos x}{4}+C\]

Work Step by Step

Let \[I=\int x(\sin x)\cos x dx\] Substitute $\;\sin x=t\;\;\;\ldots (1) $ \[\Rightarrow dt=\cos x dx\] \[I=\int (\sin^{-1}t)t \:dt\] Using integration by parts \[I=\sin^{-1}t\int tdt-\int\left((\sin^{-1}t)'\int tdt\right)dt+C_1\] Where $C_1$ is constant of integration \[I=\frac{t^2}{2}\sin^{-1}t-\frac{1}{2}\int\frac{t^2}{\sqrt{1-t^2}}dt+C_1\;\;\;\ldots (2)\] Let \[I_1=\int\frac{t^2}{\sqrt{1-t^2}}dt\] \[I_1=\int\frac{1-(1-t^2)}{\sqrt{1-t^2}}dt\] \[I_1=\int\frac{1}{\sqrt{1-t^2}}dt-\int\sqrt{1-t^2}dt\] \[\left[\int\frac{dx}{\sqrt{a^2-x^2}}=\sin^{-1}\left(\frac{x}{a}\right)\right]\] \[\left[\int \sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right)\right]\] \[I_1=\sin^{-1}t-\left[\frac{t}{2}\sqrt{1-t^2}+\frac{1}{2}\sin^{-1}t\right]+C_2\] Where $C_2$ ia constant of integration \[I_1=\frac{1}{2}\sin^{-1}t-\frac{t}{2}\sqrt{1-t^2}+C_2\] Using (3) in (2) \[I=\frac{t^2}{2}\sin^{-1}t-\frac{1}{2}\left[\frac{1}{2}\sin^{-1}t-\frac{t}{2}\sqrt{1-t^2}+C_2\right]+C_1\] \[I=\frac{t^2}{2}\sin^{-1}t-\frac{1}{4}\sin^{-1}t+\frac{t}{4}\sqrt{1-t^2}+\left(C_1-\frac{1}{2}C_2\right)\] From (1) \[I=\frac{x\sin^2 x}{2}-\frac{1}{4}x+\frac{\sin x\cos x}{4}+C\] Where $C=C_1-\frac{1}{2}C_2$ Hence \[I=\frac{x\sin^2 x}{2}-\frac{1}{4}x+\frac{\sin x\cos x}{4}+C\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.