Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 47

Answer

\[\frac{-4}{3}\]

Work Step by Step

Let \[I=\int_{0}^{1}\frac{x-1}{\sqrt x}dx\] Clearly 0 is point of infinite discontinuity of the integrand $\frac{x-1}{\sqrt x}$ So $I$ is improper integral \[I=\lim_{t\rightarrow 0^+}\int_{t}^{1}\frac{x-1}{\sqrt x}dx\] \[I=\lim_{t\rightarrow 0^+}\int_{t}^{1}\left(\sqrt x-x^{-\frac{1}{2}}\right)dx\] \[I=\lim_{t\rightarrow 0^+}\left[\frac{2x^{\frac{3}{2}}}{3}-2x^{\frac{1}{2}}\right]_{t}^{1}\] \[I=\lim_{t\rightarrow 0^+}\left[\frac{2}{3}-2-\frac{2t^{\frac{3}{2}}}{3}+2t^{\frac{1}{2}}\right]\] \[I=\frac{2}{3}-2=-\frac{4}{3}\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=-\frac{4}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.