Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 577: 8

Answer

$$2\tan^{-1}(\sqrt{e^x-1})+c$$

Work Step by Step

Given $$\int \frac{dx}{\sqrt{e^x-1}}$$ Let $u^2= e^x-1\ \ \Rightarrow \ 2udu= e^xdx\ \ \Rightarrow dx=\dfrac{ 2udu}{u^2+1}$, then \begin{align*} \int \frac{dx}{\sqrt{e^x-1}}&=\int \frac{2udu}{u(u^2+1)}\\ &=\int \frac{2 du}{ u^2+1 }\\ &=2\tan^{-1}u+c\\ &=2\tan^{-1}(\sqrt{e^x-1})+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.