Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 35

Answer

\[4\sqrt{1+\sqrt{x}}+C\]

Work Step by Step

Let \[I=\int\frac{1}{\sqrt{x+x^{\frac{3}{2}}}}dx\] \[I=\int\frac{dx}{\sqrt{x(1+\sqrt{x})}}dx\] \[I=\int\frac{dx}{\sqrt{x}(\sqrt{1+\sqrt{x}}})dx\;\;\;\ldots (1)\] Substitute $1+\sqrt{x}=t\;\;\;\ldots (2)$ \[\Rightarrow \frac{1}{2\sqrt{x}}dx=dt\] (1) becomes \[I=\int\frac{2}{\sqrt{t}}dt=2\int t^{-\frac{1}{2}}dt\] \[I=2\times 2\sqrt {t}+C\] Where $C$ is constant of integration \[I=4\sqrt{t}+C\] From (2) \[I=4\sqrt{1+\sqrt{x}}+C\] Hence \[I=4\sqrt{1+\sqrt{x}}+C\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.