Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 33

Answer

\[\frac{x}{\sqrt{4-x^2}}-\sin^{-1}\left(\frac{x}{2}\right)+C\]

Work Step by Step

Let \[I=\int\frac{x^2}{(4-x^2)^{\frac{3}{2}}}dx\;\;\;\ldots (1)\] Substitute $\;x=2\sin\theta\;\;\;\ldots (2)$ \[\Rightarrow dx=2\cos\theta d\theta\] (1) becomes \[I=\int\frac{4\sin^2\theta}{(4-4\sin^2\theta)^{\frac{3}{2}}}2\cos\theta d\theta\] Simplifying, \[I=\int\frac{8\sin^2\theta\cos\theta}{8\cos^3\theta}d\theta\] \[I=\int\tan^2\theta d \theta\] \[I=\int (\sec^2\theta-1)d\theta\] \[I=\tan\theta-\theta+C \;\;\;\ldots (3)\] Where $C$ is constant of integration From (2) \[\sin\theta=\frac{x}{2}\] \[\cos\theta=\sqrt{1-\sin^2\theta}=\sqrt{1-\frac{x^2}{4}}\] \[\cos\theta=\frac{\sqrt{4-x^2}}{2}\] \[\Rightarrow \tan\theta=\frac{x}{\sqrt{4-x^2}}\] (3) becomes \[I=\frac{x}{\sqrt{4-x^2}}-\sin^{-1}\left(\frac{x}{2}\right)+C\] Hence,\[I=\frac{x}{\sqrt{4-x^2}}-\sin^{-1}\left(\frac{x}{2}\right)+C\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.