Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 16

Answer

\[-\frac{1}{\tan\theta}+\frac{\tan^3\theta}{3}+2\tan\theta+C\]

Work Step by Step

Let \[I=\int\frac{\sec^6 \theta}{\tan^2\theta}d\theta\;\;\;\ldots (1)\] \[I=\int\frac{\sec^4 \theta}{\tan^2\theta}\cdot\sec^2 \theta d\theta\] \[\left[\sec^2 \theta=1+\tan^2 \theta\right]\] \[I=\int\frac{(1+\tan^2 \theta)^2}{\tan^2\theta}\sec^2 \theta d\theta\] Substitute $\; t=\tan\theta \;\;\;\ldots (2)$ $\;\;\;\;\;\;\;\;\;\;\;\Rightarrow dt=\sec^2 \theta \:d\theta$ \[I=\int\frac{(1+t^2)^2}{t^2}dt\] \[I=\int\left(\frac{1+t^4+2t^2}{t^2}\right)dt\] \[I=\int (t^{-2}+t^{2}+2)dt\] \[I=-\frac{1}{t}+\frac{t^3}{3}+2t+C\] From (2) \[I=-\frac{1}{\tan\theta}+\frac{\tan^3\theta}{3}+2\tan\theta+C\] Hence \[I=-\frac{1}{\tan\theta}+\frac{\tan^3\theta}{3}+2\tan\theta+C\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.