Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 62

Answer

The solution of the given question is $\ \sin \ x$.

Work Step by Step

$\frac{{{\sec }^{2}}\ x\ \csc \ x}{{{\sec }^{2\ }}x\ +\ {{\csc }^{2}}x}$ By using the reciprocal identity of trigonometry, which is $\text{sec }x=\frac{1}{\text{cos }x}$ and $\csc x=\ \frac{1}{\sin x}$ the expression can be further simplified as: $\frac{{{\sec }^{2}}\ x\ \csc \ x}{{{\sec }^{2\ }}x\ +\ {{\csc }^{2}}x}=\ \frac{\frac{1}{{{\cos }^{2}}x}\times \frac{1}{\sin x}}{\frac{1}{{{\cos }^{2}}x}+\frac{1}{{{\sin }^{2}}x}}$ Now, the equation above can be further simplified by multiplying $\frac{{{\cos }^{2}}x{{\sin }^{2}}x}{{{\cos }^{2}}x{{\sin }^{2}}x}$ $\begin{align} & \frac{{{\sec }^{2}}\ x\ \csc \ x}{{{\sec }^{2\ }}x\ +\ {{\csc }^{2}}x}=\ \frac{\frac{1}{{{\cos }^{2}}x}\times \frac{1}{\sin x}}{\frac{1}{{{\cos }^{2}}x}+\frac{1}{{{\sin }^{2}}x}}\times \frac{{{\cos }^{2}}x{{\sin }^{2}}x}{{{\cos }^{2}}x{{\sin }^{2}}x} \\ & =\frac{\sin }{{{\sin }^{2}}x+{{\cos }^{2}}x} \\ & =\frac{\sin \ x}{1} \\ & =\sin x \end{align}$ Conjecture: Left side is equal to $\sin x$. Thus, the left side of the expression is equal to the right side, which is $\frac{{{\sec }^{2}}\ x\ \csc \ x}{{{\sec }^{2\ }}x\ +\ {{\csc }^{2}}x}=\ \sin \ x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.