Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 33

Answer

See the full explanation below.

Work Step by Step

${{\sec }^{2}}x{{\csc }^{2}}x$ Apply the Pythagorean identity of trigonometry ${{\sec }^{2}}x=1+{{\tan }^{2}}x$ , Then, the above expression can be further simplified as: $\begin{align} & {{\sec }^{2}}x{{\csc }^{2}}x=\left( 1+{{\tan }^{2}}x \right){{\csc }^{2}}x \\ & ={{\csc }^{2}}x+{{\tan }^{2}}x.{{\csc }^{2}}x \end{align}$ By using the quotient identity of trigonometry ${{\tan }^{2}}x=\frac{{{\sin }^{2}}x}{{{\cos }^{2}}x}$ , and reciprocal identity of trigonometry ${{\csc }^{2}}x=\frac{1}{{{\sin }^{2}}x}$ , the above expression can be further simplified as: $\begin{align} & {{\csc }^{2}}x+{{\tan }^{2}}x.{{\csc }^{2}}x={{\csc }^{2}}x+\frac{{{\sin }^{2}}x}{{{\cos }^{2}}x}.\frac{1}{si{{n}^{2}}x} \\ & ={{\csc }^{2}}x+\frac{1}{{{\cos }^{2}}x} \end{align}$ By using the reciprocal identity of trigonometry ${{\sec }^{2}}x=\frac{1}{{{\cos }^{2}}x}$ , Now, the above expression can be further simplified as: $\begin{align} & {{\csc }^{2}}x+\frac{1}{{{\cos }^{2}}x}={{\csc }^{2}}x+{{\sec }^{2}}x \\ & ={{\sec }^{2}}x+{{\csc }^{2}}x \end{align}$ Thus, the left side of the expression is equal to the right side, which is ${{\sec }^{2}}x{{\csc }^{2}}x={{\sec }^{2}}x+{{\csc }^{2}}x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.