Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 59

Answer

See the explanation below.

Work Step by Step

$\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{1-{{\tan }^{2}}x}$ By using the quotient identity of trigonometry ${{\tan }^{2}}x=\frac{{{\sin }^{2}}x}{{{\cos }^{2}}x}$ , the above expression can be further simplified as: $\begin{align} & \frac{co{{s}^{2}}x-{{\sin }^{2}}x}{1-{{\tan }^{2}}x}=\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{1-\frac{{{\sin }^{2}}x}{co{{s}^{2}}x}} \\ & =\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{co{{s}^{2}}x}} \end{align}$ Then, rewrite the main fraction bar as $\div $: $\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{co{{s}^{2}}x}}=\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{1}\div \frac{co{{s}^{2}}x-{{\sin }^{2}}x}{co{{s}^{2}}x}$ Invert the divisor and multiply: $\begin{align} & \frac{co{{s}^{2}}x-{{\sin }^{2}}x}{1}\div \frac{co{{s}^{2}}x-{{\sin }^{2}}x}{co{{s}^{2}}x}=\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{1}.\frac{co{{s}^{2}}x}{co{{s}^{2}}x-{{\sin }^{2}}x} \\ & =co{{s}^{2}}x \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\frac{co{{s}^{2}}x-{{\sin }^{2}}x}{1-{{\tan }^{2}}x}={{\cos }^{2}}x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.