Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 43

Answer

See the full explanation below.

Work Step by Step

$\frac{\tan x+\tan y}{1-\tan x\tan y}$ Apply the quotient identity of trigonometry $\tan x=\frac{\sin x}{\cos x}$ and $\tan y=\frac{\sin y}{\cos y}$. Then the above expression can be further simplified as: $\frac{\tan x+\tan y}{1-\tan x\tan y}=\frac{\frac{\sin x}{\cos x}+\frac{\sin y}{\cos y}}{1-\frac{\sin x}{\cos x}.\frac{\sin y}{\cos y}}$ By expressing the terms in the numerator and denominator with least common denominator $\cos x\cos y$, we get: $\frac{\frac{\sin x}{\cos x}+\frac{\sin y}{\cos y}}{1-\frac{\sin x}{\cos x}.\frac{\sin y}{\cos y}}=\frac{\frac{\sin x\cos y+\cos x\sin y}{\cos x\cos y}}{\frac{\cos x\cos y-\sin x\sin y}{\cos x\cos y}}$ Then rewrite the main fraction bar as $\div $: $\frac{\frac{\sin x\cos y+\cos x\sin y}{\cos x\cos y}}{\frac{\cos x\cos y-\sin x\sin y}{\cos x\cos y}}=\frac{\sin x\cos y+\cos x\sin y}{\cos x\cos y}\div \frac{\cos x\cos y-\sin x\sin y}{\cos x\cos y}$ Invert the divisor and multiply: $\begin{align} & \frac{\sin x\cos y+\cos x\sin y}{\cos x\cos y}\div \frac{\cos x\cos y-\sin x\sin y}{\cos x\cos y}=\frac{\sin x\cos y+\cos x\sin y}{\cos x\cos y}.\frac{\cos x\cos y}{\cos x\cos y-\sin x\sin y} \\ & =\frac{\sin x\cos y+\cos x\sin y}{\cos x\cos y-\sin x\sin y} \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\frac{\tan x+\tan y}{1-\tan x\tan y}=\frac{\sin x\cos y+\cos x\sin y}{\cos x\cos y-\sin x\sin y}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.