Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 52

Answer

,

Work Step by Step

${{\sin }^{4}}t-{{\cos }^{4}}t$ Now, factorize the above expression. By using the formulae ${{A}^{2}}-{{B}^{2}}=(A+B)(A-B)$ , with $A={{\sin }^{2}}t$ and $B={{\cos }^{2}}t$ for the first numeric expression. ${{\sin }^{4}}t-{{\cos }^{4}}t=\left( {{\sin }^{2}}t+{{\cos }^{2}}t \right)\left( {{\sin }^{2}}t-{{\cos }^{2}}t \right)$ Apply the Pythagorean identity of trigonometry ${{\sin }^{2}}t+{{\cos }^{2}}t=1$ , and now the above expression can be further simplified as: $\begin{align} & {{\sin }^{4}}t-{{\cos }^{4}}t=\left( {{\sin }^{2}}t+{{\cos }^{2}}t \right)\left( {{\sin }^{2}}t-{{\cos }^{2}}t \right) \\ & =1\left( {{\sin }^{2}}t-{{\cos }^{2}}t \right) \\ & ={{\sin }^{2}}t-{{\cos }^{2}}t \end{align}$ By using the Pythagorean identity of trigonometry is ${{\sin }^{2}}t=1-{{\cos }^{2}}t$ , which comes out by solving ${{\sin }^{2}}t+{{\cos }^{2}}t=1$, the above expression can be further simplified as: $\begin{align} & {{\sin }^{2}}t-{{\cos }^{2}}t=1-{{\cos }^{2}}t-{{\cos }^{2}}t \\ & =1-2{{\cos }^{2}}t \end{align}$ Thus, the left side of the expression is equal to the right side, which is ${{\sin }^{4}}t-{{\cos }^{4}}t=1-2{{\cos }^{2}}t$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.