Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 49

Answer

See the explanation below.

Work Step by Step

$\frac{1+\cos t}{1-\cos t}$ We multiply $\frac{1+\cos t}{1+\cos t}$ to the provided expression: $\begin{align} & \frac{1+\cos t}{1-\cos t}=\frac{1+\cos t}{1-\cos t}.\frac{1+\cos t}{1+\cos t} \\ & =\frac{{{\left( 1+\cos t \right)}^{2}}}{1-{{\cos }^{2}}t} \end{align}$ Applying the Pythagorean identity of trigonometry ${{\sin }^{2}}t=1-{{\cos }^{2}}t$ , which comes out by solving ${{\sin }^{2}}t+{{\cos }^{2}}t=1$ , the above expression can be further simplified as: $\frac{{{\left( 1+\cos t \right)}^{2}}}{1-{{\cos }^{2}}t}=\frac{{{\left( 1-\cos t \right)}^{2}}}{{{\sin }^{2}}t}$ Now, consider the right side of the given expression: ${{\left( \csc t-\cot t \right)}^{2}}$ By using the reciprocal identity $\csc t=\frac{1}{\sin t}$ , and the quotient identity of trigonometry $\cot t=\frac{\cos t}{\sin t}$ , now, the above expression can be further simplified as: $\begin{align} & {{\left( \csc t-\cot t \right)}^{2}}={{\left( \frac{1}{\sin t}-\frac{\cos t}{\sin t} \right)}^{2}} \\ & ={{\left( \frac{1-\cos t}{\sin t} \right)}^{2}} \\ & =\frac{{{\left( 1-\cos t \right)}^{2}}}{{{\sin }^{2}}t} \end{align}$ Now, the identity is verified because both sides are equal to $\frac{{{\left( 1-\cos t \right)}^{2}}}{{{\sin }^{2}}t}$. Thus, the left side of the expression is equal to the right side, which is $\frac{1+\cos t}{1-\cos t}={{\left( \csc t-\cot t \right)}^{2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.