Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 35

Answer

See the full explanation below.

Work Step by Step

Let us consider the left side of the given expression: $\frac{\sec x-\csc x}{\sec x+\csc x}$ Apply the reciprocal identity of trigonometry $\sec x=\frac{1}{\cos x}$ , and $\csc x=\frac{1}{sinx}$ , then the above expression can be further simplified as: $\frac{\sec x-\csc x}{\sec x+\csc x}=\frac{\frac{1}{\cos x}-\frac{1}{\sin x}}{\frac{1}{\cos x}+\frac{1}{\sin x}}$ We multiply the numerator and denominator by $sinx$. $\begin{align} & \frac{\frac{1}{\cos x}-\frac{1}{\sin x}}{\frac{1}{\cos x}+\frac{1}{\sin x}}=\frac{\frac{1}{\cos x}-\frac{1}{\sin x}}{\frac{1}{\cos x}+\frac{1}{\sin x}}.\frac{\sin x}{\sin x} \\ & =\frac{\frac{\sin x}{\cos x}-\frac{\sin x}{\sin x}}{\frac{\sin x}{\cos x}+\frac{\sin x}{\sin x}} \\ & =\frac{\frac{\sin x}{\cos x}-1}{\frac{\sin x}{\cos x}+1} \end{align}$ By using the quotient identity of trigonometry $\tan x=\frac{\sin x}{\cos x}$, the above expression can be further simplified as: $\frac{\frac{\sin x}{\cos x}-1}{\frac{\sin x}{\cos x}+1}=\frac{\tan x-1}{\tan x+1}$ Hence, the left side of the expression is equal to the right side, which is $\frac{\sec x-\csc x}{\sec x+\csc x}=\frac{\tan x-1}{\tan x+1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.