Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 54

Answer

See the full explanation below.

Work Step by Step

$\frac{\sin \theta }{1-\cot \theta }-\frac{\cos \theta }{\tan \theta -1}$ Apply the quotient identity of trigonometry $\cot \theta =\frac{\cos \theta }{\sin \theta }$ and $\tan \theta =\frac{\sin \theta }{\cos \theta }$. Then, the above expression can be further simplified as: $\frac{\sin \theta }{1-\cot \theta }-\frac{\cos \theta }{\tan \theta -1}=\frac{\sin \theta }{1-\frac{\cos \theta }{\sin \theta }}-\frac{\cos \theta }{\frac{\sin \theta }{\cos \theta }-1}$ In the above expression, the least common denominator is $\sin \theta $ and $\cos \theta $, respectively. Rewrite each fraction with the least common denominator: $\frac{\sin \theta }{1-\frac{\cos \theta }{\sin \theta }}-\frac{\cos \theta }{\frac{\sin \theta }{\cos \theta }-1}=\frac{\sin \theta }{\frac{\sin \theta -\cos \theta }{\sin \theta }}-\frac{\cos \theta }{\frac{\sin \theta -\cos \theta }{\cos \theta }}$ Then, rewrite the main fraction bar as $\div $: $\frac{\sin \theta }{\frac{\sin \theta -\cos \theta }{\sin \theta }}-\frac{\cos \theta }{\frac{\sin \theta -\cos \theta }{\cos \theta }}=\sin \theta \div \frac{\sin \theta -\cos \theta }{\sin \theta }-\cos \theta \div \frac{\sin \theta -\cos \theta }{\cos \theta }$ Invert the divisor and multiply: $\begin{align} & \sin \theta \div \frac{\sin \theta -\cos \theta }{\sin \theta }-\cos \theta \div \frac{\sin \theta -\cos \theta }{\cos \theta }=\sin \theta .\frac{\sin \theta }{\sin \theta -\cos \theta }-\cos \theta .\frac{\cos \theta }{\sin \theta -\cos \theta } \\ & =\frac{{{\sin }^{2}}\theta }{\sin \theta -\cos \theta }-\frac{{{\cos }^{2}}\theta }{\sin \theta -\cos \theta } \end{align}$ By expressing the terms in the numerator and denominator with the least common denominator $\sin \theta -\cos \theta $, we get: $\frac{{{\sin }^{2}}\theta }{\sin \theta -\cos \theta }-\frac{{{\cos }^{2}}\theta }{\sin \theta -\cos \theta }=\frac{{{\sin }^{2}}\theta -{{\cos }^{2}}\theta }{\sin \theta -\cos \theta }$ We use the formulae ${{A}^{2}}-{{B}^{2}}=(A+B)(A-B)$, with $A={{\sin }^{2}}\theta $ and $B={{\cos }^{2}}\theta $. Now, rewrite the expression as: $\begin{align} & \frac{{{\sin }^{2}}\theta -{{\cos }^{2}}\theta }{\sin \theta -\cos \theta }=\frac{\left( \sin \theta +\cos \theta \right)\left( \sin \theta -\cos \theta \right)}{\sin \theta -\cos \theta } \\ & =\sin \theta +\cos \theta \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\frac{\sin \theta }{1-\cot \theta }-\frac{\cos \theta }{\tan \theta -1}=\sin \theta +\cos \theta $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.