Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 51

Answer

See the full explanation below.

Work Step by Step

${{\cos }^{4}}t-{{\sin }^{4}}t$ Now factorize the above expression. Apply the formulae ${{A}^{2}}-{{B}^{2}}=(A+B)(A-B)$, with $A={{\cos }^{2}}t$, and $B={{\sin }^{2}}t$ for the first numeric expression. ${{\cos }^{4}}t-{{\sin }^{4}}t=\left( {{\cos }^{2}}t+{{\sin }^{2}}t \right)\left( {{\cos }^{2}}t-{{\sin }^{2}}t \right)$ Apply the Pythagorean identity of trigonometry ${{\sin }^{2}}t+{{\cos }^{2}}t=1$. Then, the above expression can be further simplified as: $\begin{align} & {{\cos }^{4}}t-{{\sin }^{4}}t=1\left( {{\cos }^{2}}t-{{\sin }^{2}}t \right) \\ & ={{\cos }^{2}}t-{{\sin }^{2}}t \end{align}$ We use the Pythagorean identity of trigonometry ${{\cos }^{2}}t=1-{{\sin }^{2}}t$, which comes out by solving ${{\sin }^{2}}t+{{\cos }^{2}}t=1$. Now, the above expression can be further simplified as: $\begin{align} & {{\cos }^{2}}t-{{\sin }^{2}}t=1-{{\sin }^{2}}t-{{\sin }^{2}}t \\ & =1-2{{\sin }^{2}}t \end{align}$ Thus, the left side of the expression is equal to the right side, which is ${{\cos }^{4}}t-{{\sin }^{4}}t=1-2{{\sin }^{2}}t$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.