Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 42

Answer

See the full explanation below.

Work Step by Step

$\frac{\tan 2\theta +\cot 2\theta }{\sec 2\theta }$ Apply the quotient identity of trigonometry $\tan \theta =\frac{\sin \theta }{\cos \theta }$ , and $\cot \theta =\frac{\cos \theta }{\sin \theta }$ , and the reciprocal identity of trigonometry $\sec \theta =\frac{1}{\cos \theta }$. Then the above expression can be further simplified as: $\frac{\tan 2\theta +\cot 2\theta }{\sec 2\theta }=\frac{\frac{\sin 2\theta }{\cos 2\theta }+\frac{\cos 2\theta }{\sin 2\theta }}{\frac{1}{\cos 2\theta }}$ Multiply $\frac{\sin 2\theta }{\cos 2\theta }$ by $\frac{\sin 2\theta }{\sin 2\theta }$ , and $\frac{\cos 2\theta }{\sin 2\theta }$ by $\frac{\cos 2\theta }{\cos 2\theta }$. $\begin{align} & \frac{\frac{\sin 2\theta }{\cos 2\theta }+\frac{\cos 2\theta }{\sin 2\theta }}{\frac{1}{\cos 2\theta }}=\frac{\frac{\sin 2\theta }{\cos 2\theta }.\frac{\sin 2\theta }{\sin 2\theta }+\frac{\cos 2\theta }{\sin 2\theta }.\frac{\cos 2\theta }{\cos 2\theta }}{\frac{1}{\cos 2\theta }} \\ & =\frac{\frac{{{\sin }^{2}}2\theta }{\cos 2\theta \sin 2\theta }+\frac{{{\cos }^{2}}2\theta }{\cos 2\theta \sin 2\theta }}{\frac{1}{\cos 2\theta }} \\ & =\frac{\frac{{{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta }{\cos 2\theta \sin 2\theta }}{\frac{1}{\cos 2\theta }} \end{align}$ By using the Pythagorean identity of trigonometry ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, now the above expression can be further simplified as: $\frac{\frac{{{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta }{\cos 2\theta \sin 2\theta }}{\frac{1}{\cos 2\theta }}=\frac{\frac{1}{\cos 2\theta \sin 2\theta }}{\frac{1}{\cos 2\theta }}$ Then rewrite the main fraction bar as $\div $: $\frac{\frac{1}{\cos 2\theta \sin 2\theta }}{\frac{1}{\cos 2\theta }}=\frac{1}{\cos 2\theta \sin 2\theta }\div \frac{1}{\cos 2\theta }$ Invert the divisor and multiply: $\begin{align} & \frac{1}{\cos 2\theta \sin 2\theta }\div \frac{1}{\cos 2\theta }=\frac{1}{\cos 2\theta \sin 2\theta }.\frac{\cos 2\theta }{1} \\ & =\frac{1}{\sin 2\theta } \end{align}$ by using the reciprocal identity of trigonometry $csc\theta =\frac{1}{sin\theta }$, now the above expression can be further simplified as: $\frac{1}{\sin 2\theta }=\csc 2\theta $ Thus, the left side of the expression is equal to the right side, which is $\frac{\tan 2\theta +\cot 2\theta }{\sec 2\theta }=\csc 2\theta $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.