Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 60

Answer

See the explanation below.

Work Step by Step

$\frac{\sin x+\cos x}{\sin x}-\frac{\cos x-\sin x}{\cos x}$ By expressing the terms in the numerator and denominator with the least common denominator $\sin x\cos x$, we get: $\begin{align} & \frac{\sin x+\cos x}{\sin x}-\frac{\cos x-\sin x}{\cos x}=\frac{\cos x\left( \sin x+\cos x \right)-\sin x\left( \cos x-\sin x \right)}{\sin x\cos x} \\ & =\frac{\cos x\sin x+{{\cos }^{2}}x-\sin x\cos x+{{\sin }^{2}}x}{\sin x\cos x} \\ & =\frac{{{\cos }^{2}}x+{{\sin }^{2}}x}{\sin x\cos x} \end{align}$ Apply the Pythagorean identity of trigonometry ${{\sin }^{2}}x+{{\cos }^{2}}x=1$; then, the above expression can be further simplified as: $\frac{{{\cos }^{2}}x+{{\sin }^{2}}x}{\sin x\cos x}=\frac{1}{\sin x\cos x}$ Then, rewrite the above expression as: $\frac{1}{\sin x\cos x}=\frac{1}{\sin x}.\frac{1}{\cos x}$ By using the reciprocal identity of trigonometry $\csc x=\frac{1}{\sin x}$ and $\sec x=\frac{1}{\cos x}$ , and now the above expression can be further simplified as: $\begin{align} & \frac{1}{\sin x}.\frac{1}{\cos x}=\csc x.\sec x \\ & =\csc x\sec x \\ & =\sec x\csc x \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\frac{\sin x+\cos x}{\sin x}-\frac{\cos x-\sin x}{\cos x}=\sec x\csc x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.