Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 56

Answer

See the explanation below.

Work Step by Step

$\left( {{\cot }^{2}}\theta +1 \right)\left( {{\sin }^{2}}\theta +1 \right)$ We multiply the above expression as: $\left( {{\cot }^{2}}\theta +1 \right)\left( {{\sin }^{2}}\theta +1 \right)={{\cot }^{2}}\theta {{\sin }^{2}}\theta +{{\cot }^{2}}\theta +{{\sin }^{2}}\theta +1$ By using the quotient identity of trigonometry ${{\cot }^{2}}\theta =\frac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }$ , the above expression can be further simplified as: $\begin{align} & {{\cot }^{2}}\theta {{\sin }^{2}}\theta +{{\cot }^{2}}\theta +{{\sin }^{2}}\theta +1=\frac{{{\cos }^{2}}\theta }{si{{n}^{2}}\theta }.si{{n}^{2}}\theta +{{\cot }^{2}}\theta +{{\sin }^{2}}\theta +1 \\ & ={{\cos }^{2}}\theta +{{\cot }^{2}}\theta +{{\sin }^{2}}\theta +1 \\ & ={{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\cot }^{2}}\theta +1 \end{align}$ Apply the Pythagorean identity of trigonometry ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$; now, the above expression can be further simplified as: $\begin{align} & {{\sin }^{2}}\theta +{{\cos }^{2}}\theta +{{\tan }^{2}}\theta +1=1+{{\cot }^{2}}\theta +1 \\ & ={{\cot }^{2}}\theta +2 \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\left( {{\cot }^{2}}\theta +1 \right)\left( {{\sin }^{2}}\theta +1 \right)={{\cot }^{2}}\theta +2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.