Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 28

Answer

See the explanation below.

Work Step by Step

$\cot t+\frac{\sin t}{1+\cos t}=\csc t$ Recall Trigonometric Identities, $\begin{align} & \cot t=\frac{\cos t}{\sin t} \\ & {{\sin }^{2}}t+{{\cos }^{2}}t=1 \\ \end{align}$ Use the above identities and solve the left side of the given expression, $\cot t+\frac{\sin t}{1+\cos t}=\csc t$ Multiply numerator and denominator of $\cot t$ by $1+\cos t$ and $\frac{\sin t}{1+\cos t}$ by $\sin t$. $\begin{align} & \cot t+\frac{\sin t}{1+\cos t}=\frac{\cos t}{\sin t}\left( \frac{1+\cos t}{1+\cos t} \right)+\frac{\sin t}{1+\cos t}\left( \frac{\sin t}{\sin t} \right) \\ & =\frac{\cos t+{{\cos }^{2}}t}{\sin t+\cos t\sin t}+\frac{{{\sin }^{2}}t}{\sin t+\sin t\cos t} \\ & =\frac{\cos t+1}{\sin t\left( 1+\cos t \right)} \\ & =\frac{1}{\sin t} \end{align}$ Recall Reciprocity Identity, $\csc t=\frac{1}{\sin t}$ Therefore, $\cot t+\frac{\sin t}{1+\cos t}=\csc t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.