Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 32

Answer

See the full explanation below.

Work Step by Step

$\frac{\sin x}{\cos x+1}+\frac{\cos x-1}{\sin x}$ Multiply the numerator and denominator of $\frac{\sin x}{\cos x+1}$ by $\cos x-1$. $\frac{\sin x}{\cos x+1}+\frac{\cos x-1}{\sin x}=\frac{\sin x}{\cos x+1}.\frac{\cos x-1}{\cos x-1}+\frac{\cos x-1}{\sin x}$ Multiply the above expression by using the formulae $(A+B)(A-B)={{A}^{2}}-{{B}^{2}}$ , with $A=1$ and $B=\cos x$ for the first numeric expression. $\frac{\sin x}{\cos x+1}.\frac{\cos x-1}{\cos x-1}+\frac{\cos x-1}{\sin x}=\frac{\sin x\left( \cos x-1 \right)}{{{\cos }^{2}}x-1}+\frac{\cos x-1}{\sin x}$ Now, apply the Pythagorean identity of trigonometry: ${{\cos }^{2}}x-1=-{{\sin }^{2}}x$ , which comes out by solving ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Then, the above expression can be further simplified as: $\frac{\sin x\left( \cos x-1 \right)}{{{\cos }^{2}}x-1}+\frac{\cos x-1}{\sin x}=\frac{\sin x\left( \cos x-1 \right)}{-{{\sin }^{2}}x}+\frac{\cos x-1}{\sin x}$ Multiply the above equation by $-$ to remove the negative sign from the denominator $-{{\sin }^{2}}x$. $\begin{align} & \frac{\sin x\left( \cos x-1 \right)}{-{{\sin }^{2}}x}+\frac{\cos x-1}{\sin x}=\frac{\sin x\left( \cos x-1 \right)}{-{{\sin }^{2}}x}+\frac{\cos x-1}{\sin x} \\ & =\frac{\sin x\left( \cos x-1 \right)}{-{{\sin }^{2}}x}+\frac{\cos x-1}{\sin x} \\ & =\frac{\sin x\left( 1-\cos x \right)}{{{\sin }^{2}}x}+\frac{\cos x-1}{\sin x} \\ & =\frac{1-\cos x}{\sin x}+\frac{\cos x-1}{\sin x} \end{align}$ Take the least denominator as $sinx$ and add the constant terms in the numerator of the given expression as: $\begin{align} & \frac{1-\cos x}{\sin x}+\frac{\cos x-1}{\sin x}=\frac{1-\cos x+\cos x-1}{\sin x} \\ & =\frac{0}{\sin x} \\ & =0 \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\frac{\sin x}{\cos x+1}+\frac{\cos x-1}{\sin x}=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.