Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 45

Answer

See the full explanation below.

Work Step by Step

${{\left( \sec x-\tan x \right)}^{2}}$ Apply the reciprocal identity $\sec x=\frac{1}{\cos x}$, and quotient identity of trigonometry $\tan x=\frac{\sin x}{\cos x}$. Then the above expression can be further simplified as: $\begin{align} & {{\left( \sec x-\tan x \right)}^{2}}={{\left( \frac{1}{\cos x}-\frac{\sin x}{\cos x} \right)}^{2}} \\ & ={{\left( \frac{1-\sin x}{\cos x} \right)}^{2}} \\ & =\frac{{{\left( 1-\sin x \right)}^{2}}}{{{\cos }^{2}}x} \end{align}$ Now, let us consider the right side of the given expression: $\frac{1-\sin x}{1+\sin x}$ We multiply $\frac{1-\sin x}{1-\sin x}$ the given expression: $\begin{align} & \frac{1-\sin x}{1+\sin x}=\frac{1-\sin x}{1+\sin x}.\frac{1-\sin x}{1-\sin x} \\ & =\frac{{{\left( 1-\sin x \right)}^{2}}}{1-{{\sin }^{2}}x} \end{align}$ Apply the Pythagorean identity of trigonometry ${{\cos }^{2}}x=1-{{\sin }^{2}}x$, which comes out by solving ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Then the above expression can be further simplified as: $\frac{{{\left( 1-\sin x \right)}^{2}}}{1-{{\sin }^{2}}x}=\frac{{{\left( 1-\sin x \right)}^{2}}}{{{\cos }^{2}}x}$ The identity is verified because both sides are equal to $\frac{{{\left( 1-\sin x \right)}^{2}}}{{{\cos }^{2}}x}$. Thus, the left side of the expression is equal to the right side, which is ${{\left( \sec x-\tan x \right)}^{2}}=\frac{1-\sin x}{1+\sin x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.