Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 50

Answer

See the explanation below.

Work Step by Step

$\frac{{{\cos }^{2}}t+4\cos t+4}{\cos t+2}$ Factorize the numerator of the above expression as: $\begin{align} & \frac{{{\cos }^{2}}t+4\cos t+4}{\cos t+2}=\frac{{{\cos }^{2}}t+2\cos t+2\cos t+4}{\cos t+2} \\ & =\frac{\cos t\left( \cos t+2 \right)+2\left( \cos t+2 \right)}{\cos t+2} \\ & =\frac{\left( \cos t+2 \right)\left( \cos t+2 \right)}{\cos t+2} \\ & =\cos t+2 \end{align}$ Now, consider the right side of the provided expression: $\frac{2\sec t+1}{\sec t}$ Factorize the above expression as: $\frac{2\sec t+1}{\sec t}=\frac{2\sec t}{\sec t}+\frac{1}{\sec t}$ By using the reciprocal identity $\cos t=\frac{1}{\sec t}$ , then the above expression can be further simplified as: $\begin{align} & \frac{2\sec t}{\sec t}+\frac{1}{\sec t}=2+\cos t \\ & =\cos t+2 \end{align}$ Now, the identity is verified because both sides are equal to $\cos t+2$. Hence, the left side of the expression is equal to the right side, which is $\frac{{{\cos }^{2}}t+4\cos t+4}{\cos t+2}=\frac{2\sec t+1}{\sec t}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.