Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 53

Answer

See the full explanation below.

Work Step by Step

$\frac{\sin \theta -\cos \theta }{\sin \theta }+\frac{\cos \theta -\sin \theta }{\cos \theta }$ In the above expression, the least common denominator is $\left( \sin \theta \right)\left( \cos \theta \right)$. Rewrite each fraction with the least common denominator: $\begin{align} & \frac{\sin \theta -\cos \theta }{\sin \theta }+\frac{\cos \theta -\sin \theta }{\cos \theta }=\frac{\cos \theta \left( \sin \theta -\cos \theta \right)+\sin \theta \left( \cos \theta -\sin \theta \right)}{\sin \theta \cos \theta } \\ & =\frac{\cos \theta sin\theta -co{{s}^{2}}\theta +\sin \theta \cos \theta -{{\sin }^{2}}\theta }{\sin \theta \cos \theta } \\ & =\frac{2\sin \theta \cos \theta -\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}{\sin \theta \cos \theta } \end{align}$ Apply the Pythagorean identity of trigonometry ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Then, the above expression can be further simplified as: $\frac{2\sin \theta \cos \theta -\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}{\sin \theta \cos \theta }=\frac{2\sin \theta \cos \theta -1}{\sin \theta \cos \theta }$ Now, the above expression can be written as: $\frac{2\sin \theta \cos \theta -1}{\sin \theta \cos \theta }=\frac{2\sin \theta \cos \theta }{\sin \theta \cos \theta }-\frac{1}{\sin \theta \cos \theta }$ Express the terms in the numerator and denominator with the least common denominator $\sin \theta \cos \theta $: $\frac{2\sin \theta \cos \theta }{\sin \theta \cos \theta }-\frac{1}{\sin \theta \cos \theta }=\frac{2-\sin \theta \cos \theta }{\sin \theta \cos \theta }$ Now, the above expression can be written as: $\frac{2-\sin \theta \cos \theta }{\sin \theta \cos \theta }=2-\frac{1}{\sin \theta }.\frac{1}{\cos \theta }$ By using the reciprocal identity of trigonometry $\csc \theta =\frac{1}{sin\theta }$, and $\sec \theta =\frac{1}{\cos \theta }$, now, the above expression can be further simplified as: $\begin{align} & 2-\frac{1}{\sin \theta }.\frac{1}{\cos \theta }=2-\csc \theta .\sec \theta \\ & =2-\csc \theta \sec \theta \end{align}$ Thus, the left side of the expression is equal to the right side, which is $\frac{\sin \theta -\cos \theta }{\sin \theta }+\frac{\cos \theta -\sin \theta }{\cos \theta }=2-\sec \theta \csc \theta $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.