Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 57

Answer

See the explanation below.

Work Step by Step

${{\left( \cos \theta -\sin \theta \right)}^{2}}+{{\left( \cos \theta +\sin \theta \right)}^{2}}$ Now, factorize the above expression. By using the formulae ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ , with $A=\cos \theta $ and $B=\sin \theta $ for the numeric expression. $\begin{align} & {{\left( \cos \theta -\sin \theta \right)}^{2}}+{{\left( \cos \theta +\sin \theta \right)}^{2}}={{\cos }^{2}}\theta -2\cos \theta \sin \theta +{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\cos \theta \sin \theta +{{\sin }^{2}}\theta \\ & ={{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +{{\sin }^{2}}\theta \end{align}$ Apply the Pythagorean identity of trigonometry ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$; then the above expression can be further simplified as: $\begin{align} & {{\cos }^{2}}\theta +{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1+1 \\ & =2 \end{align}$ Thus, the left side of the expression is equal to the right side, which is ${{\left( \cos \theta -\sin \theta \right)}^{2}}+{{\left( \cos \theta +\sin \theta \right)}^{2}}=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.