Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 31

Answer

See the explanation below.

Work Step by Step

$\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}=2\sec x$ Recall Pythagorean Identity, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ Use the above identity and solve the left side of the given expression, $\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}=2\sec x$ Multiply numerator and denominator of $\frac{\cos x}{1-\sin x}$ by $1+\sin x$. $\begin{align} & \frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}=\frac{\cos x}{1-\sin x}\cdot \left( \frac{1+\sin x}{1+\sin x} \right)+\frac{1-\sin x}{\cos x} \\ & =\frac{\cos x\left( 1+\sin x \right)}{1-{{\sin }^{2}}x}+\frac{1-\sin x}{\cos x} \\ & =\frac{\cos x\left( 1+\sin x \right)}{{{\cos }^{2}}x}+\frac{1-\sin x}{\cos x} \\ & =\frac{1+\sin x}{\cos x}+\frac{1-\sin x}{\cos x} \end{align}$ Recall Reciprocal Identity, $\frac{1}{\cos x}=\sec x$ Further simplify, $\begin{align} & \frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}=\frac{1+\sin x+\left( 1-\sin x \right)}{\cos x} \\ & =\frac{2}{\cos x} \\ & =2\sec x \end{align}$ Therefore, $\frac{\cos x}{1-\sin x}+\frac{1-\sin x}{\cos x}=2\sec x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.