Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.1 - Verifying Trigonometric Identities - Exercise Set - Page 659: 61

Answer

The solution of the given question is $\cos \ x$.

Work Step by Step

$\frac{\left( \text{sec x + tan x} \right)\left( \text{secx}\ -\ \text{tan}\ \text{x} \right)}{\sec \ x}$ By using the formula $\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}$ , now, the above expression can be further simplified as: $\frac{\left( \text{sec x + tan x} \right)\left( \text{secx}\ -\ \text{tan}\ \text{x} \right)}{\sec \ x}=\frac{\text{se}{{\text{c}}^{2}}x\ -\ {{\tan }^{2}}\ x}{\sec \ x}\ \ \ $ Apply the reciprocal identity of trigonometry, which is $\text{sec }x=\frac{1}{\text{cos }x}$; then the above expression can be further simplified as: $\begin{align} & \frac{\left( \sec \text{ }x\text{ + }\tan \text{ }x \right)\left( \sec x\ -\ \tan \ x \right)}{\sec \ x}=\frac{{{\sec }^{2}}\ -\ {{\tan }^{2}}\ x}{\sec \ x} \\ & =\ \frac{1}{\sec \ x} \\ & =\cos \ x\ \end{align}$ Conjecture: Left side is equal to cos x. Thus, the left side of the expression is equal to the right side, which is $\frac{\left( \sec \text{ }x\text{ + }\tan \text{ }x \right)\left( \sec x\ -\ \tan \ x \right)}{\sec \ x}=\ \cos \ x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.