Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 8

Answer

$z_{0}= 2^{\frac{1}{4}}\{\;cos(\frac{7\pi}{8})+isin(\frac{7\pi}{8})\}$ and $z_{1}=2^{\frac{1}{4}}\{\;cos(\frac{15\pi}{8})+isin(\frac{15\pi }{8})\}$

Work Step by Step

$R=\sqrt{1^2+(-1)^2}=\sqrt{2}\\\\$ $tan\;\Theta \;=\frac{b}{a}=\;\frac{-1}{1}=-1\\$ $\Theta \;= tan^{-1}(-1)\;=\frac{7\pi}{4}\\\\$ $(1-i)=\sqrt{2}\{\;cos(\frac{7\pi}{4})+isin(\frac{7\pi}{4})\}\\\\$ $(1-i)^{\frac{1}{2}}=\;[\sqrt{2}\{\;cos(\frac{7\pi}{4})+isin(\frac{7\pi}{4})\}\;]^{\frac{1}{2}}\\\\$ $(1-i)^{\frac{1}{2}}=\;2^{\frac{1}{4}}\{\;cos(\frac{7\pi+8\pi n}{4})+isin(\frac{7\pi+8\pi n}{4})\}^{\frac{1}{2}}\\\\$ $(1-i)^{\frac{1}{2}}=\;2^{\frac{1}{4}}\{\;cos(\frac{7\pi+8\pi n}{8})+isin(\frac{7\pi+8\pi n}{8})\}\\\\$ At $\;\;\;\;\;\;\;\;\;n=0;$ $z_{0}= 2^{\frac{1}{4}}\{\;cos(\frac{7\pi}{8})+isin(\frac{7\pi}{8})\}$ At $\;\;\;\;\;\;n=1$ $z_{1}=2^{\frac{1}{4}}\{\;cos(\frac{15\pi}{8})+isin(\frac{15\pi }{8})\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.