Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 29

Answer

$y=2-2cos(t)+sin(t) $

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''+{y}'=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}+re^{rt}=0\\\\$ $r(r^2+1)=0 \rightarrow\;\;\;\;\; r_{1}= 0\;\;\;\;\;or\;\;\;r_{2}=i\;,\;\;r_{3}=-i \;\;\;\;\;\;\\\\$ So the 3 roots are:$\;\;\; r_{1}=0 \;\;\;,\;\;r_{2},r_{3}=\pm i $ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= C_{1}+C_{2}cos(t)+C_{3}sin(t)$ Derivatives of the general solution; ${y}'=-C_{2}sin(t)+C_{3}cos(t)$ ${y}''=-C_{2}cos(t)-C_{3}sin(t)$ At; $y(0)=C_{1}+C_{2}=0 \;\;\;\;\;\Rightarrow \;\;\;\;\;\;\;C_{1}=-C_{2}$ ${y}'(0)=C_{3}=1$ ${y}''(0)=-C_{2}=2 \;\;\;\;\;\;\rightarrow \;\;\;\;\;C_{1}=2$ $\therefore \;\;\;\;\;\;\;\;\;y=2-2cos(t)+sin(t) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.