Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 31

Answer

$y=-3+2t$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $y^{(4)}-4{y}'''+4{y}''=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}-4r^3e^{rt}+4r^2e^{rt}=0\\\\$ $r^2(r^2-4r+4)=r^2(r-2)(r-2)=0 $ $ \rightarrow\;\;\;\;\; r_{1},r_{2}= 0\;\;\;\;\;or\;\;\;r_{3}\;,r_{4}=2 \;\;\;\;\;\;\\\\$ So the 3 roots are: $\;\;\;r_{1},r_{2}=0 \;\;\;,\;\;r_{3},r_{4}=2 $ $y= C_{1}+tC_{2}+C_{3}e^{2t}+C_{4}te^{2t}$ Derivatives of the general solution; ${y}'=C_{2}+2C_{3}e^{2t}+2C_{4}te^{2t}+C_{4}e^{2t}$ ${y}''=4C_{3}e^{2t}+4C_{4}te^{2t}+4C_{4}e^{2t}$ ${y}'''=8C_{4}e^{2t}+8C_{4}te^{2t}+12C_{4}e^{2t}\\\\$ At; $y(1)=C_{1}+C_{2}+e^2C_{3}+e^2C_{4}=-1 $ ${y}'(1)=C_{2}+2C_{3}e^{2}+3C_{4}e^{2}=2$ ${y}''(1)=4C_{3}e^{2}+8C_{4}e^{2}=0 $ ${y}'''(1)=8C_{4}e^{2}+20C_{4}e^{2}=0 $ $\;\;\;\;\;\Rightarrow \;\;\;\;C_{3}=C_{4}=0\;\;\;\;\;\;\;C_{2}=2\;\;\;\;\;\;C_{1}=-3$ $\therefore y=-3+2t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.