Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 13

Answer

$y(t)=C_{1}te^t+C_{2}t^{2}e^{-t}+C_{3}t^3e^{2t}$

Work Step by Step

let : $\;\;\;\;\;\;\;y=e^{rt}$ ${y}'=re^{rt}\;\;\;\;\;\;\;\;\;{y}''=r^2e^{rt}\;\;\;\;\;\;\;\;{y}'''=r^3e^{rt}\\\\$ $(2r^3-4r^2-2r+4)e^{rt}=0\\\\$ $\;\;\;\;\;\;\;\;\;\Rightarrow \;\;\;\;\;2r^3-4r^2-2r+4=0\\\\$ $2r^2(r-2)-2(r-2)=0\;\;\;\;\;\;\rightarrow \;\;\;\;\;\;2(r-2)(r^2-1)=0\\\\$ $r^2=1\;\;\;\;\;\;\;\;\Rightarrow \;\;\;r_{1}= 1,r_{2}=-1\;\;\;\;or\;\;\;\; \;\;r_{3}=2\\\\$ $y(t)=C_{1}te^t+C_{2}t^{2}e^{-t}+C_{3}t^3e^{2t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.