Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 34

Answer

$y=\frac{2}{13}e^{-t}+\frac{24}{13}e^{\frac{1}{2}t}cos(t)+\frac{3}{13}e^{\frac{1}{2}t}sin(t)$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $4{y}'''+{y}'+5y=0 \;\;\;\;\Rightarrow \;\;\;\; 4r^3e^{rt}+re^{rt}+5e^{rt}=0\\\\$ $4r^3+r+5=(r+1)(4r^2-4r+5)=0 $ $ \rightarrow\;\;\;\;\; r_{1}= -1\;\;\;\;\;or\;\;\;r_{2}=\frac{1}{2}+i\;\;,\;\;r_{3}=\frac{1}{2}-i \;\;\;\;\;\\\\$ So the 3 roots are: $\;\;\;\;r_{1}=-1 \;\;\;,\;\;r_{2},r_{3}=\frac{1}{2}\pm i$ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= C_{1}e^{-t}+C_{2}e^{\frac{1}{2}t}cos(t)+C_{3}e^{\frac{1}{2}t}sin(t)$ Derivatives of the general solution; ${y}'=-C_{1}e^{-t}+\frac{1}{2}C_{2}e^{\frac{1}{2}t}cos(t)+C_{3}e^{\frac{1}{2}t}cos(t)-C_{2}e^{\frac{1}{2}t}sin(t)+\frac{1}{2}C_{3}sin(t)$ ${y}''=C_{1}e^{-t}-\frac{3}{4}C_{2}e^{\frac{1}{2}t}cos(t)+C_{3}e^{\frac{1}{2}t}cos(t)-C_{2}e^{\frac{1}{2}t}sin(t)-\frac{3}{4}C_{3}e^{\frac{1}{2}t}sin(t)$ At; $y(0)=C_{1}+C_{2}=0$ ${y}'(0)=C_{1}+2C_{2}-2C_{3}-\frac{1}{2}C_{4}=0 $ ${y}''(0)=-C_{1}+\frac{1}{2}C_{2}+C_{3}=1 $ ${y}'''(0)=C_{1}-\frac{3}{4}C_{2}+C_{3}=-1$ $\;\;\;\;\;\Rightarrow \;\;\;\;C_{1}=\frac{2}{13}\;\;\;\;\;\;\;C_{2}=\frac{24}{13}\;\;\;\;\;\;C_{3}=\frac{3}{13} \;\;\;\;\;\; $ $\therefore y=\frac{2}{13}e^{-t}+\frac{24}{13}e^{\frac{1}{2}t}cos(t)+\frac{3}{13}e^{\frac{1}{2}t}sin(t)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.