Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 24

Answer

$y= C_{1}e^{-t}+C_{2}e^{(-2-\sqrt{2}) t}+C_{3}e^{(-2+\sqrt{2}) t}$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''+5{y}''+6{y}'+2y=0 \;\;\;\;\Rightarrow \;\;\;\; r^3e^{rt}+5r^2e^{rt}+6re^{rt}+2e^{rt}=0\\\\$ $r^3+5r^2+6r+2=(r+1)(r^2+4r+2)=0 \;\;\;\;\;\;$$\rightarrow \;\;\;\;\;\; r_{1}= -1\;\;\;\;\;\;\;or\;\;\;\;\;\;r_{2}=-2-\sqrt{2}\;,\;r_{3}=-2+\sqrt{2} \;\;\;\;\;\;\\\\$ $y= C_{1}e^{-t}+C_{2}e^{(-2-\sqrt{2}) t}+C_{3}e^{(-2+\sqrt{2}) t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.