Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 18

Answer

$y=[C_{1}+C_{2} t] + [C_{3}e^{t}+C_{4}e^{- t}] + [C_{5}cos( t)+C_{6}sin( t)]$

Work Step by Step

Let $\;\;\;\;y=e^{rt}\\\\$ $y^{6}+{y}''=0 \;\;\; \Rightarrow \;\;\;\;\; r^6e^{rt}+r^2e^{rt}=0\\\\$ $r^2(r^4-1)=r^2(r^2-1)(r^2+1) \;\;\;\; \rightarrow \;\;\;\; r_{1},r_{2}=0\;\;\;\;or\;\;\;\; r_{3}=1\;,r_{4}=-1\;\;\;or\;\;\;\;r_{5}=i,r_{6}=-i\\\\$ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y=[C_{1}+C_{2} t] + [C_{3}e^{t}+C_{4}e^{- t}] + [C_{5}cos( t)+C_{6}sin( t)]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.