Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 28

Answer

$y=e^{-t} [\;C_{1}cos(t)+C_{2}sin(t)\;]+e^{-2t}[\;C_{3}cos(\sqrt{3}t)+C_{4}sin(\sqrt{3}t)\;]\\$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $y^{(4)}+6{y}'''+17{y}''+22{y}'+14y=0 \;\;\;\;\Rightarrow \;\;\;\; r^4e^{rt}+6r^3e^{rt}+17r^2e^{rt}+22re^{rt}+14e^{rt}=0\\\\$ $r^4+6r^3+17r^2+22r+14=(r^2+2r+2)(r^2+4r+7)=0 $$ \rightarrow\;\;\;\;\; r_{1}= -1+i\;\;,\;r_{2}=-1-i\;\;\;\;\;\;\;or\;\;\;\;\;\;r_{3}=-2-i\sqrt{3}\;,\;\;r_{4}=-2-i\sqrt{3} \;\;\;\;\;\;\\\\$ So the 4 roots are: $\;\;\;r_{1},r_{2}=-1\pm i \;\;\;,\;\;r_{3},r_{4}=-2\pm i\sqrt{3}$ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= [\;C_{1}e^{-t}cos(t)+C_{2}e^{- t}sin(t)\;]+[\;C_{3}e^{(-2 t}cos(\sqrt{3}t)+C_{4}e^{-t}sin(\sqrt{3}t)\;]\\$ $y=e^{-t} [\;C_{1}cos(t)+C_{2}sin(t)\;]+e^{-2t}[\;C_{3}cos(\sqrt{3}t)+C_{4}sin(\sqrt{3}t)\;]\\$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.