Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 25

Answer

$y= C_{1}e^{\frac{-1}{2}t}+\;[C_{2}e^{\frac{-1}{3} t}cos(\frac{\sqrt{3}}{3} t)+C_{3}e^{\frac{-1}{3} t}sin(\frac{\sqrt{3}}{3} t)\;]$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $18{y}'''+21{y}''+14{y}'+4y=0 \;\;\;\;\Rightarrow \;\;\;\; 18r^3e^{rt}+21r^2e^{rt}+14re^{rt}+4e^{rt}=0\\\\$ $18r^3+21r^2+14r+4=(2r+1)(9r^2+6r+4)=0 $$\rightarrow \;\;\;\;\;\; r_{1}= \frac{-1}{2}\;\;\;\;\;or\;\;\;\;\;\;r_{2}=\frac{-1}{3}-i\frac{\sqrt{3}}{3}\;,\;r_{3}=\frac{-1}{3}+i\frac{\sqrt{3}}{3} \;\;\;\;\;\;\\\\$ So the 3 roots are: $\;\;\;r_{1}=\frac{-1}{2} \;\;\;\;\; ,\;\;\;\;r_{2},r_{3}=\frac{-1}{3}\pm i\frac{\sqrt{3}}{3} $ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= C_{1}e^{\frac{-1}{2}t}+\;[C_{2}e^{\frac{-1}{3} t}cos(\frac{\sqrt{3}}{3} t)+C_{3}e^{\frac{-1}{3} t}sin(\frac{\sqrt{3}}{3} t)\;]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.