Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 27

Answer

$y= C_{1}e^{\frac{-1}{3}t}+C_{2}e^{\frac{-1}{4} t}+[\;C_{3}e^{- t}cos(2t)+C_{4}e^{-t}sin(2t)\;]$

Work Step by Step

Let $\;\;\;\;\;y=e^{rt}\\\\$ $12y^{(4)}+31{y}'''+75{y}''+37{y}'+5y=0 \;\;\;\;\Rightarrow \;\;\;\; 12r^4e^{rt}+31r^3e^{rt}+75r^2e^{rt}+37re^{rt}+5e^{rt}=0\\\\$ $12r^4+31r^3+75r^2+37r+5=(3r+1)(4r+1)(r^2+2r+5)=0 $$\rightarrow\;\;\;\;\; r_{1}= \frac{-1}{3}\;\;\;\;or\;\;\;\;r_{2}=\frac{-1}{4}\;\;\;or\;\;\;r_{3}=-1-2i\;,\;\;r_{4}=-1+2i \;\;\;\;\;\;\\\\$ So the 4 roots are: $\;\;\;r_{1}=\frac{-1}{3} \;\;\;,\;\;r_{2}=\frac{-1}{4} \;\;\;,\;\;\; r_{3},r_{4}=-1\pm 2i$ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= C_{1}e^{\frac{-1}{3}t}+C_{2}e^{\frac{-1}{4} t}+[\;C_{3}e^{- t}cos(2t)+C_{4}e^{-t}sin(2t)\;]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.