Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 38

Answer

$(a)W(t)=C \;\;\;\;\;\;\;\;\;\;(b)W(t)=-8 \;\;\;\;\;\;\;\;(c)W(t)=4$

Work Step by Step

a) $\;\;\;y^{(4)}-y=0$ $W(y_{1},y_{2},y_{3},y_{4})(t)=Ce^{-\int p_{1}(t)\; dt} \;\;\;\;\;\;at \;\;\;\;\;p_{1}=0$ $W(y_{1},y_{2},y_{3},y_{4})(t)=Ce^{-\int 0\; dt} =C$ b)$\;\;\;W(e^t,e^{-t},cos(t),sin(t))= \begin{vmatrix} e^t & e^{-t} & cos(t) & sin(t) \\ e^t & -e^{-t} & -sin(t) & cos(t) \\ e^t & e^{-t} & -cos(t) & -sin(t)\\ e^t & -e^{-t} & sin(t) & -cos(t) \end{vmatrix}\\\\\\$ $W(e^t,e^{-t},cos(t),sin(t))=e^t\begin{vmatrix} -e^{-t} & -sin(t) & cos(t) \\ e^{-t} & -cos(t) & -sin(t)\\ -e^{-t} & sin(t) & -cos(t) \end{vmatrix}\;\;-\;\;e^{-t}\begin{vmatrix} e^t & -sin(t) & cos(t) \\ e^t & -cos(t) & -sin(t)\\ e^t & sin(t) & -cos(t) \end{vmatrix}\;\;+\;cos(t)\begin{vmatrix} e^t & -e^{-t} & cos(t) \\ e^t & e^{-t} & -sin(t)\\ e^t & -e^{-t} & -cos(t) \end{vmatrix}\;\;-\;sin(t)\begin{vmatrix} e^t & -e^{-t} & -sin(t) \\ e^t & e^{-t} & -cos(t) \\ e^t & -e^{-t} & sin(t) \end{vmatrix}\\\\$ $W(e^t,e^{-t},cos(t),sin(t))=e^t(-2e^{-t})-e^{-t}(2e^t)+cos(t)(-4sin(t))-sin(t)(4sin(t))=-4-4=-8$ c)$\;\;\;W(cosh(t),sin(t),cos(t),sin(t))=\begin{vmatrix} cosh(t) & sinh(t) & cos(t) & sin(t) \\ sinh(t) & cosh(t) & -sin(t) & cos(t) \\ cosh(t) & sinh(t) & -cos(t) & -sin(t)\\ sin(t) & cosh(t) & sin(t) & -cos(t) \end{vmatrix}\\\\\\$ $W(cosh(t),sin(t),cos(t),sin(t))=cosh(t)\begin{vmatrix} cosh(t) & -sin(t) & cos(t) \\ sinh(t) & -cos(t) & -sin(t)\\ cosh(t) & sin(t) & -cos(t) \end{vmatrix}\;\;-\;\;sinh(t)\begin{vmatrix} sinh(t) & -sin(t) & cos(t) \\ cosh(t) & -cos(t) & -sin(t)\\ sinh(t) & sin(t) & -cos(t) \end{vmatrix}\;\;+\;cos(t)\begin{vmatrix} sinh(t) & cosh(t) & cos(t) \\ cosh(t) & sinh(t) & -sin(t)\\ sinh(t) & cosh(t) & -cos(t) \end{vmatrix}\;\;-\;sin(t)\begin{vmatrix} sinh(t) & cosh(t) & -sin(t) \\ cosh(t) & sinh(t) & -cos(t) \\ sinh(t) & cosh(t) & sin(t) \end{vmatrix}\\\\$ $W(cosh(t),sin(t),cos(t),sin(t))=cosh(t)(2cosh(t))-sinh(t)(2sinh(t))+cos(t)(2cos(t))-sin(t)(-2sin(t))=2+2=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.