Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 21

Answer

$y=e^t[\;(C_{1}+C_{2}t ) cos(t)+(C_{3}+C_{4}t) sin(t)\;]+ e^{-t}[\;(C_{5}+C_{6}t) cos(t)+(C_{7}+C_{8}t) sin(t)\;]$

Work Step by Step

Let $\;\;\;\;\;\;y=e^{rt}\\\\$ $y^{(8)}+8y^{(4)}+16{y}=0 \;\;\;\; \Rightarrow \;\;\;\;\;r^8e^{rt}+8r^4e^{rt}+16e^{rt}=0\\\\$ $r^8+8r^4+16=(r^4+4)^2=(r^2-(2i^2))(r^2+(2i)^2) $ $ \rightarrow \;\;\;\;\; r_{1},r_{2}=1\pm i\;\;\;\;\;or\;\;\;\;r_{3},r_{4}=-1\pm i \;\;\;\;\;\;\\\\$ So the 8 roots is: $\;\;r_{1},r_{2}=1\pm i \;\;\; ,\;\;\;r_{3},r_{4}=1\pm i \;\;\;\;,\;\;\;\;r_{5},r_{6}=-1\pm i \;\;\;\; ,\;\;\;\;r_{7},r_{8}=-1\pm i$ The general solution for complex roots is: $y= C_{1}e^{\alpha t}cos(\beta t)+C_{2}e^{\alpha t}sin(\beta t)$ $y= [\;C_{1}e^{t}cos(t)+C_{2} e^{t}sin(t)\;]+ t[\;C_{3}e^{t}cos(t)+C_{4} e^{t}sin(t)\;]+ [\;C_{5}e^{-t}cos(t)+C_{6} e^{-t}sin(t)\;] + t[\;C_{7}e^{-t}cos(t)+C_{8} e^{-t}sin(t)\;]$ $y=e^t[\;(C_{1}+C_{2}t ) cos(t)+(C_{3}+C_{4}t) sin(t)\;]+ e^{-t}[\;(C_{5}+C_{6}t) cos(t)+(C_{7}+C_{8}t) sin(t)\;]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.