Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 23

Answer

$y= C_{1}e^t+C_{2}e^{(2-\sqrt{5}) t}+C_{3}e^{(2+\sqrt{5}) t}$

Work Step by Step

Let $\;\;\;\;\;\;y=e^{rt}\\\\$ ${y}'''+5{y}''+3{y}'+y=0 \;\;\;\;\;\Rightarrow \;\;\;\;\;\; r^3e^{rt}+5r^2e^{rt}+3re^{rt}+e^{rt}=0\\\\$ $r^3+5r^2+3r+1=(r-1)(r^2-4r-1)=0 $$\rightarrow \;\;\;\;\;\; r_{1}= 1\;\;\;\;\;or\;\;\;\;\;r_{2}=2-\sqrt{5}\;,\;r_{3}=2+\sqrt{5} \;\;\;\;\;\;\\\\$ $y= C_{1}e^t+C_{2}e^{(2-\sqrt{5}) t}+C_{3}e^{(2+\sqrt{5}) t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.