Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 4 - Higher Order Linear Equations - 4.2 Homogenous Equations with Constant Coefficients - Problems - Page 232: 10

Answer

$Z_{0}=\sqrt{\frac{3}{2}}+i\frac{\sqrt{2}}{2}\;\;\;\;\;\;\;\;\;and\;\;\;\;\;\;\;\;\;Z_{1}=-\sqrt{\frac{3}{2}}-i\frac{\sqrt{2}}{2}$

Work Step by Step

$\{2\;[cos(\frac{\pi}{3})+isin(\frac{\pi}{3})]\;\}^{\frac{1}{2}}\;=\;\;\;\;\;\;\;\;\;\;\sqrt{2}[\;cos(\frac{\pi}{3}+2\pi n)+isin(\frac{\pi}{3}+2\pi n)\;]^{\frac{1}{2}}\;\;=\;\\\\$ $\sqrt{2}\;[cos(\frac{\pi+6\pi n}{6})+isin(\frac{\pi+6\pi n}{6})]\;\;\\\\$ At n=0; $z_{0}=\sqrt{2}\;[cos(\frac{\pi}{6})+isin(\frac{\pi}{6})]\;=\;\sqrt{2}\;[\frac{\sqrt{2}}{3}+i\frac{1}{2}]\;=\;\sqrt{\frac{3}{2}}+i\frac{\sqrt{2}}{2}$ At n=1; $z_{1}=\sqrt{2}\;[cos(\frac{7\pi}{6})+isin(\frac{7\pi}{6})]\;=\;\sqrt{2}\;[-\frac{\sqrt{2}}{3}-i\frac{1}{2}]\;=\;-\sqrt{\frac{3}{2}}-i\frac{\sqrt{2}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.